Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 792
1.
Cell Signal ; 119: 111167, 2024 Jul.
Article En | MEDLINE | ID: mdl-38604341

Autophagy is essential for eliminating aging and organelle damage that maintaining cellular homeostasis. However, the dysfunction of autophagy has been proven in hair loss such as AGA. Despite the crucial role of TRPML channels in regulating autophagy, their specific function in hair growth remains unclarified. To investigate the biological functions and associated molecular mechanisms of TRPMLs in hair growth, Animal experiments were conducted to confirm the function of TRLMLs activation in promoting hair growth. Subsequently, we analyzed molecular mechanisms in human dermal papilla cells (hDPCs) activated by TRPMLs through transcriptome sequencing analysis. MLSA1(a TRPML agonist) promoted hair regeneration and accelerated hair cycle transition in mice. The activation of TRPMLs upregulated calcium signaling inducing hDPCs to secrete hair growth promoting factors and decrease hair growth inhibiting factors. In addition, activation of TRPMLs triggered autophagy and reduced the generation of ROS, thereby delaying the senescence of hDPCs. All these findings suggested that TRPMLs activation could promote hair growth by regulating hDPCs secretion of hair growth-related factors. Moreover, it may play a prominent role in preventing hDPCs from ROS damage induced by H2O2 or DHT. Targeting TRPMLs may represent a promising therapeutic strategy for treating hair loss.


Autophagy , Hair , Animals , Mice , Humans , Autophagy/drug effects , Hair/growth & development , Hair/drug effects , Hair Follicle/drug effects , Hair Follicle/cytology , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Dermis/cytology , Dermis/drug effects , Transient Receptor Potential Channels/metabolism , Calcium Signaling/drug effects
2.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 158-163, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678608

Dermal papilla cell (DPC) belongs to a specialized mesenchymal stem cell for hair follicle regeneration. Maintaining the ability of DPCs to stimulate hair in vitro culture is important for hair follicle morphogenesis and regeneration. As the third generation of platelet concentrate, injectable platelet-rich fibrin (i-PRF) is a novel biomaterial containing many growth factors and showing promising effects on tissue reconstruction. We aimed to explore the influences of i-PRF on the proliferative, migratory, as well as trichogenic ability of DPCs and compared the effects of i-PRF and platelet-rich plasma (PRP), the first generation of platelet concentrate. Both PRP and i-PRF facilitated DPCs proliferation, and migration, along with trichogenic inductivity as well as stimulated the TGF-ß/Smad pathway, while the impacts of i-PRF were more significant than PRP. A small molecule inhibitor of TGF-beta receptor I, Galunisertib, was also applied to treat DPCs, and it rescued the impacts of i-PRF on the proliferative, migratory, trichogenic inductivity, and proteins-associated with TGF-ß/Smad pathway in DPCs. These findings revealed that i-PRF had better effects than PRP in enhancing the proliferative, migratory, and hair-inducing abilities of DPCs by the TGF-ß/Smad pathway, which indicated the beneficial role of i-PRF in hair follicle regeneration.


Cell Movement , Cell Proliferation , Hair Follicle , Platelet-Rich Fibrin , Signal Transduction , Smad Proteins , Transforming Growth Factor beta , Signal Transduction/drug effects , Cell Proliferation/drug effects , Transforming Growth Factor beta/metabolism , Hair Follicle/drug effects , Hair Follicle/metabolism , Hair Follicle/cytology , Smad Proteins/metabolism , Humans , Platelet-Rich Fibrin/metabolism , Cell Movement/drug effects , Dermis/cytology , Dermis/metabolism , Dermis/drug effects , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Platelet-Rich Plasma/metabolism , Injections
3.
Environ Int ; 186: 108638, 2024 Apr.
Article En | MEDLINE | ID: mdl-38593689

Microplastics (MPs) are pervasive pollutants in the natural environment and contribute to increased levels of illness in both animals and humans. However, thespecific impacts of MPs on skin damage and alopeciaare not yet well understood. In this study, we have examined the effects of two types of polystyrene MPs (pristine and aged) on skin and hair follicle damage in mice. UV irradiation changed the chemical and physical properties of the aged MPs, including functional groups, surface roughness, and contact angles. In both in vivo and in vitro experiments, skin and cell injuries related to oxidative stress, apoptosis, tight junctions (TJs), alopecia, mitochondrial dysfunction, and other damages were observed. Mechanistically, MPs and aged MPs can induce TJs damage via the oxidative stress pathway and inhibition of antioxidant-related proteins, and this can lead to alopecia. The regulation of cell apoptosis was also observed, and this is involved in the ROS-mediated mitochondrial signaling pathway. Importantly, aged MPs showed exacerbated toxicity, which may be due to their elevated surface irregularities and altered chemical compositions. Collectively, this study suggests a potential therapeutic approach for alopecia and hair follicle damage caused by MPs pollution.


Alopecia , Apoptosis , Microplastics , Oxidative Stress , Polystyrenes , Skin , Tight Junctions , Alopecia/chemically induced , Microplastics/toxicity , Oxidative Stress/drug effects , Apoptosis/drug effects , Animals , Mice , Polystyrenes/toxicity , Tight Junctions/drug effects , Tight Junctions/metabolism , Skin/drug effects , Skin/pathology , Hair Follicle/drug effects , Reactive Oxygen Species/metabolism
4.
In Vivo ; 38(3): 1199-1202, 2024.
Article En | MEDLINE | ID: mdl-38688645

BACKGROUND/AIM: Hair-follicle keratinocytes contain high levels of cysteine, which is derived from methionine, rapidly proliferate, and form the hair shaft. The high proliferation rate of hair-follicle keratinocytes resembles that of aggressive cancer cells. In the present study, we determined the effect of a methionine-deficient diet on hair loss (alopecia) in mice with or without homocysteine supplementation. MATERIALS AND METHODS: Mice were fed a normal rodent diet (2020X, ENVIGO) (Group 1); a methionine-choline-deficient diet (TD.90262, ENVIGO) (Group 2); a methionine-choline-deficient diet with a 10 mg/kg/day supply of homocysteine administered by intra-peritoneal (i.p.) injection for 2 weeks (Group 3). In Group 2, mice were fed a methionine-choline-deficient diet for an additional 2 weeks but with 10 mg/kg/day of i.p. l-homocysteine and the mice were observed for two additional weeks. Subsequently, the mice were fed a standard diet that included methionine. Hair loss was monitored by photography. RESULTS: After 14 days, hair loss was observed in Group 2 mice on a methionine-restricted diet but not in Group 3 mice on the methionine-restricted diet which received i.p. homocysteine. In Group 2, at 2 weeks after methionine restriction, hair loss was not rescued by homocysteine supplementation. However, after restoration of methionine in the diet, hair growth resumed. Thus, after 2 weeks of methionine restriction, only methionine restored hair loss, not homocysteine. CONCLUSION: Hair maintenance requires methionine in the diet. Future experiments will determine the effects of methionine restriction on hair-follicle stem cells.


Hair Follicle , Hair , Homocysteine , Methionine , Animals , Methionine/deficiency , Methionine/metabolism , Methionine/administration & dosage , Mice , Hair/growth & development , Hair/metabolism , Homocysteine/metabolism , Hair Follicle/metabolism , Hair Follicle/drug effects , Hair Follicle/growth & development , Mice, Inbred C57BL , Alopecia/metabolism , Alopecia/etiology , Alopecia/pathology , Disease Models, Animal , Diet , Keratinocytes/metabolism
5.
Biomed Pharmacother ; 174: 116503, 2024 May.
Article En | MEDLINE | ID: mdl-38565060

Androgenetic alopecia (AGA) is a prevalent disease in worldwide, local application or oral are often used to treat AGA, however, effective treatments for AGA are currently limited. In this work, we observed the promoting the initial anagen phase effect of pilose antler extract (PAE) on hair regeneration in AGA mice. We found that PAE accelerated hair growth and increased the degree of skin blackness by non-invasive in vivo methods including camera, optical coherence tomography and dermoscopy. Meanwhile, HE staining of sagittal and coronal skin sections revealed that PAE augmented the quantity and length of hair follicles, while also enhancing skin thickness and hair papilla diameter. Furthermore, PAE facilitated the shift of the growth cycle from the telogen to the anagen phase and expedited the proliferation of hair follicle stem cells and matrix cells in mice with AGA. This acceleration enabled the hair follicles to enter the growth phase at an earlier stage. PAE upregulated the expression of the sonic hedgehog (SHH), smoothened receptor, glioma-associated hemolog1 (GLI1), and downregulated the expression of bone morphogenetic protein 4 (BMP4), recombinant mothers against decapentaplegic homolog (Smad) 1 and 5 phosphorylation. This evidence suggests that PAE fosters hair growth and facilitates the transition of the growth cycle from the telogen to the anagen phase in AGA mice. This effect is achieved by enhancing the proliferation of follicle stem cells and matrix cells through the activation of the SHH/GLI pathway and suppression of the BMP/Smad pathway.


Alopecia , Antlers , Bone Morphogenetic Protein 4 , Hair Follicle , Hair , Animals , Antlers/chemistry , Alopecia/drug therapy , Alopecia/pathology , Hair Follicle/drug effects , Hair Follicle/metabolism , Mice , Male , Bone Morphogenetic Protein 4/metabolism , Hair/drug effects , Hair/growth & development , Hedgehog Proteins/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Cell Proliferation/drug effects , Signal Transduction/drug effects , Tissue Extracts/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Regeneration/drug effects , Deer , Smad5 Protein/metabolism
6.
J Microbiol Biotechnol ; 34(4): 812-827, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38480001

Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of ß-Catenin. Since several anagen-inductive genes are regulated by ß-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated ß-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3ß/ß-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated ß-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.


Glycogen Synthase Kinase 3 beta , Hydrogen Peroxide , Oxidative Stress , Phloroglucinol , Proto-Oncogene Proteins c-akt , Signal Transduction , beta Catenin , Humans , Phloroglucinol/pharmacology , Phloroglucinol/analogs & derivatives , Oxidative Stress/drug effects , Hydrogen Peroxide/metabolism , Signal Transduction/drug effects , beta Catenin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Phosphorylation/drug effects , Hair Follicle/drug effects , Hair Follicle/metabolism , Hair Follicle/cytology , Dermis/cytology , Dermis/metabolism , Dermis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Alopecia/drug therapy , Alopecia/metabolism
7.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38452090

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Adult Stem Cells , Cell Plasticity , Epidermis , Hair Follicle , Tretinoin , Wound Healing , Animals , Mice , Adult Stem Cells/cytology , Adult Stem Cells/physiology , Cell Lineage/drug effects , Cell Lineage/physiology , Cell Plasticity/drug effects , Cell Plasticity/physiology , Epidermis/drug effects , Epidermis/physiology , Hair Follicle/cytology , Hair Follicle/drug effects , Hair Follicle/physiology , Tretinoin/metabolism , Tretinoin/pharmacology , Wound Healing/drug effects , Wound Healing/physiology , Rejuvenation/physiology , Cell Culture Techniques , Neoplasms/pathology , Mice, Inbred C57BL
8.
Int J Pharm ; 616: 121537, 2022 Mar 25.
Article En | MEDLINE | ID: mdl-35150848

Androgenetic alopecia (AGA) affects physical and mental health with limited therapeutic options. Novel materials and delivery methods have considerable potential to improve the current paradigm of treatment. In this study, we used a novel plant nanoparticle of safflower oil body (SOB) loaded with human fibroblast growth factor 10 (hFGF10) to target hair follicles and accelerate hair regeneration in AGA mice with few adverse effects. Our data revealed that the average particle size of SOB-hFGF10 was 226.73 ± 9.98 nm, with a spherical and uniform structure, and that SOB-hFGF10 was quicker to preferentially penetrate into hair follicles than hFGF2 alone. Using a mouse model of AGA, SOB-hFGF10 was found to significantly improve hair regeneration without any significant toxicity. Furthermore, SOB-hFGF10 inhibited dihydrotestosterone (DHT)-induced TNF-α, IL-1ß, and IL-6 overproduction in macrophages in relation to hair follicle microinflammation, thereby enhancing the proliferation of dermal papilla cells. Overall, this study provides an applicable therapeutic method through targeting hair follicles and reducing microinflammation to accelerate hair regeneration in AGA.


Alopecia/drug therapy , Fibroblast Growth Factor 10 , Nanoparticles , Safflower Oil , Carthamus tinctorius/chemistry , Drug Delivery Systems , Fibroblast Growth Factor 10/administration & dosage , Fibroblast Growth Factor 10/therapeutic use , Hair/growth & development , Hair Follicle/drug effects , Humans , Regeneration , Safflower Oil/chemistry
9.
Drug Deliv ; 29(1): 328-341, 2022 Dec.
Article En | MEDLINE | ID: mdl-35040730

To prepare a topical formulation of bimatoprost (BIM) with high skin permeability, we designed a solvent mixture system composed of ethanol, diethylene glycol monoethyl ether, cyclomethicone, and butylated hydroxyanisole, serving as a volatile solvent, nonvolatile co-solvent, spreading agent, and antioxidant, respectively. The ideal topical BIM formulation (BIM-TF#5) exhibited 4.60-fold higher human skin flux and a 529% increase in dermal drug deposition compared to BIM in ethanol. In addition, compared to the other formulations, BIM-TF#5 maximally activated human dermal papilla cell proliferation at a concentration of 5 µM BIM, equivalent to 10 µM minoxidil. Moreover, BIM-TF#5 (0.3% [w/w] BIM) significantly promoted hair regrowth in the androgenic alopecia mouse model and increased the area covered by hair at 10 days by 585% compared to the vehicle-treated mice, indicating that entire telogen area transitioned into the anagen phase. Furthermore, at day 14, the hair weight of mice treated with BIM-TF#5 (5% [w/w] BIM) was 8.45- and 1.30-fold greater than in the 5% (w/w) BIM in ethanol and 5% (w/v) minoxidil treated groups, respectively. In the histological examination, the number and diameter of hair follicles in the deep subcutis were significantly increased in the BIM-TF#5 (0.3 or 5% [w/w] BIM)-treated mice compared to the mice treated with vehicle or 5% (w/w) BIM in ethanol. Thus, our findings suggest that BIM-TF#5 is an effective formulation to treat scalp alopecia, as part of a novel therapeutic approach involving direct prostamide F2α receptor-mediated stimulation of dermal papilla cells within hair follicles.


Alopecia/pathology , Bimatoprost/pharmacology , Drug Delivery Systems , Hair Follicle/drug effects , Hair/drug effects , Administration, Topical , Animals , Antioxidants/chemistry , Bimatoprost/administration & dosage , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred C57BL , Minoxidil/pharmacology , Skin Absorption/drug effects , Skin Absorption/physiology , Solvents/chemistry
10.
Sci Rep ; 12(1): 1491, 2022 01 27.
Article En | MEDLINE | ID: mdl-35087085

Androgenic alopecia is a common type of hair loss, usually caused by testosterone metabolism generating dihydrotestosterone and hair follicular micro-inflammation. These processes induce dermal papilla cells to undergo apoptosis. Currently approved effective medications for alopecia are Finasteride, an oral 5α-reductase inhibitor, Minoxidil, a topical hair growth promoter, and Diclofenac, an anti-inflammatory agent, all of which, however, have several adverse side effects. In our study, we showed the bioactivity of Acanthus ebracteatus Vahl. (AE) extract performed by 95% ethanol, and verbascoside (VB), a biomarker of AE extract. Both AE extract and VB were studied for their effects on dermal papilla cell viability and the cell cycle by using MTT assay and flow cytometry. The effect of an anti-inflammatory activity of AE extract and VB on IL-1ß, NO, and TNF-α, released from LPS induced RAW 264.7 cells, and IL-1α and IL-6 released from irradiated dermal papilla cells were detected using ELISA technique. The preventive effect on dermal papilla cell apoptosis induced by testosterone was determined by MTT assay. In controlled in vitro assays it was found that AE extract and VB at various concentrations induced dermal papilla cell proliferation which was indicated by an increase in the number of cells in the S and G2/M phases of the cell cycle. AE extract at 250 µg/mL concentration or VB at 62.50 µg/mL concentration prevented cell apoptosis induced by testosterone at a statistically significant level. In addition, both AE extract and VB greatly inhibited the release of pro-inflammatory cytokines from RAW 264.7 and dermal papilla cells. The release of IL-1ß, TNF-α, and NO from RAW 264.7 cells, as well as IL-1α and IL-6 from dermal papilla cells, was also diminished by AE extract 250 µg/mL and VB 125 µg/mL. Our results indicate that AE extract and VB are promising ingredients for anti-hair loss applications. However, further clinical study is necessary to evaluate the effectiveness of AE extract and VB as treatment for actual hair loss.


Acanthaceae/chemistry , Alopecia/drug therapy , Glucosides/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Animals , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Glucosides/therapeutic use , Hair Follicle/drug effects , Humans , Macrophages , Mice , Phenols/therapeutic use , Plant Extracts/therapeutic use , RAW 264.7 Cells
11.
Arch Dermatol Res ; 314(1): 41-51, 2022 Jan.
Article En | MEDLINE | ID: mdl-33635414

Androgenic alopecia (AGA) has a high incidence. Excess dihydrotestosterone in blood capillaries, which is converted from testosterone by 5α-reductase, is an AGA causative factor. We identified the inhibitory activity of four Polygonum multiflorum compounds against 5α-reductase via high-performance liquid chromatography, and the results showed that Physcion was a potent 5α-reductase inhibitor. Additionally, we found that through inhibiting 5α-reductase expression, Physcion could shorten the time of dorsal skin darkening and hair growth, improve hair follicle morphology, and significantly increase hair follicle count. Eventually, through molecular docking study, we found the binding energy and molecular interactions between Physcion and 5α-reductase type II. These results suggested that Physcion is a potent 5α-reductase inhibitor, as well as a new natural medicine for treating AGA.


5-alpha Reductase Inhibitors/pharmacology , Alopecia/drug therapy , Emodin/analogs & derivatives , Hair Follicle/drug effects , Plant Extracts/pharmacology , 5-alpha Reductase Inhibitors/chemistry , Animals , Emodin/chemistry , Emodin/pharmacology , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley
12.
Sci Rep ; 11(1): 24056, 2021 12 15.
Article En | MEDLINE | ID: mdl-34911993

Induction of new hair follicles (HFs) may be an ultimate treatment goal for alopecia; however, functional cells with HF inductivity must be expanded in bulk for clinical use. In vitro culture conditions are completely different from the in vivo microenvironment. Although fetal and postnatal dermal cells (DCs) have the potential to induce HFs, they rapidly lose this HF inductivity during culture, accompanied by a drastic change in gene expression. This suggests that epigenetic regulation may be involved. Of the various histone deacetylases (HDACs), Class I HDACs are noteworthy because they are ubiquitously expressed and have the strongest deacetylase activity. This study revealed that DCs from postnatal mice rapidly lose HF inductivity and that this reduction is accompanied by a significant decrease in histone H3 acetylation. However, MS-275, an inhibitor of class I HDACs, preserves HF inductivity in DCs during culture, increasing alkaline phosphatase activity and upregulating HF inductive genes such as BMP4, HEY1, and WIF1. In addition, the inhibition of class I HDACs activates the Wnt signaling pathway, the most well-described molecular pathway in HF development, via increased histone H3 acetylation within the promoter region of the Wnt transcription factor LEF1. Our results suggest that class I HDACs could be a potential target for the neogenesis of HFs.


Dermis/cytology , Dermis/physiology , Hair Follicle/drug effects , Hair Follicle/physiology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Acetylation , Animals , Biomarkers , Cells, Cultured , Gene Expression Regulation/drug effects , Histones/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Mice , Stem Cells/drug effects , Stem Cells/metabolism , Wnt Signaling Pathway
13.
Biomed Res Int ; 2021: 5598110, 2021.
Article En | MEDLINE | ID: mdl-34754881

Dermal papilla cells (DPCs) are a source of nutrients and growth factors, which support the proliferation and growth of keratinocytes as well as promoting the induction of new hair follicles and maintenance of hair growth. The protection from reactive oxygen species (ROS) and the promotion of angiogenesis are considered two of the basal mechanisms to preserve the growth of the hair follicle. In this study, a noncrosslinked hyaluronic acid (HA) filler (HYDRO DELUXE BIO, Matex Lab S.p.A.) containing several amino acids was tested with in vitro assays on human follicle dermal papilla cells (HFDPCs). The experiments were carried out to investigate the possible protection against oxidative stress and the ability to increase the vascular endothelial growth factor (VEGF) release. The results demonstrated the restoration of cell viability against UVB-induced cytotoxicity and an increase in the VEGF secretion. These data demonstrate the capability of the product to modulate human dermal papilla cells, suggesting a future use in mesotherapy, a minimally invasive local intradermal therapy (LIT), after further clinical investigations.


Dermis/metabolism , Hair Follicle/metabolism , Hyaluronic Acid/pharmacology , Cells, Cultured , Dermis/drug effects , Dermis/growth & development , Hair/growth & development , Hair Follicle/drug effects , Humans , Hyaluronic Acid/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Vascular Endothelial Growth Factor A/drug effects , Vascular Endothelial Growth Factor A/metabolism
14.
Am J Dermatopathol ; 43(12): 867-870, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34735106

ABSTRACT: Necrotizing infundibular crystalline folliculitis is a rare entity, which is a distinctive clinical and histopathological entity. Eruptive yellow waxy umbilicated folliculocentric plugs clinically correspond to pale crystalline filaments embedded in an amorphous sebum-rich material. Remarkably, only the superficial infundibular ostia remain, and the distended cavity is devoid of a follicular or sebaceous gland remnant. The pathogenesis of this enigmatic event remains to be established. The emergence of necrotizing infundibular crystalline folliculitis (NICF) as a paradoxical side effect of antitumor inhibitors epidermal growth factor receptor vascular endothelial growth factor and more recently programmed death-1 represents the expression of altered molecular pathways that underpin the pathogenesis of NICF. To explore these pathways, it is necessary to explore the hierarchy of follicular stem cells, particularly the potential role of committed infundibular stem cells that play a key role in wound healing. Committed infundibular stem cells are closely linked to the sebaceous gland stem cell axis, and this has relevance in the process of homeostatic repair of sebaceous follicles in the wake of folliculitis. The unscheduled modulation of this infundibular homeostatic sebaceous repair axis by epidermal growth factor receptor vascular endothelial growth factor, and programmed death-1 may lead to an aberrant outcome with metaplasia of infundibular keratinocytes to sebocytes. In the absence of sebaceous gland differentiation, these metaplastic infundibular sebocyte cells would lead to the consumption and loss of the infundibulum as a result of holocrine sebum production. This conceptual pathogenic pathway for NICF is constructed by incorporating recent advances in the fields of follicular stem cells, wound repair, follicular homeostasis, regulatory T cells, and molecular pathways linked to the biologicals inducing NICF.


Folliculitis/pathology , Hair Follicle/pathology , Stem Cells/pathology , Angiogenesis Inhibitors/adverse effects , Antineoplastic Agents/adverse effects , Folliculitis/chemically induced , Hair Follicle/drug effects , Humans , Immune Checkpoint Inhibitors/adverse effects , Sebaceous Glands/pathology , Stem Cells/drug effects , Vascular Endothelial Growth Factor A/antagonists & inhibitors
15.
Int J Cosmet Sci ; 43(6): 703-714, 2021 Dec.
Article En | MEDLINE | ID: mdl-34674286

OBJECTIVE: In this study, we examined the effect of C. japonicum flower extract (CFE) on melanogenesis and its mechanism in vitro and ex vivo. METHODS: The effect of CFE on melanogenesis was investigated with lightly (HEMn-LP) and moderately (HEMn-MP) pigmented normal human melanocytes, reconstituted three-dimensional skin (3D skin) model and ex vivo human hair follicles. The melanogenesis-inducing effect of CFE was evaluated using melanin content and intracellular tyrosinase activity assay. The amount and type of eumelanin and pheomelanin were analysed by using HPLC method. The mechanism involved in the effect of CFE on hyperpigmentation was explored by cyclic adenosine monophosphate (cAMP) immunoassay and western blot analysis for tyrosinase, microphthalmia-associated transcription factor (MITF) and phosphorylated CRE-binding protein (pCREB) expression. The degree of pigmentation in 3D skin and L-values were measured using a CR-300 chroma meter. The amount of dissolved melanin was measured using a spectrophotometer. The content of melanin in the hair follicles was evaluated by Fontana Masson staining. RESULTS: C. japonicum flower extract significantly increased the melanin content and cellular tyrosinase activity in both HEMn-LP and HEMn-MP cells. The markers of pheomelanin and eumelanin in HEMn-LP and HEMn-MP were also increased by CFE. We observed that CFE treatment on melanocytes increased intracellular cAMP with inducing pCREB and up-regulating the protein levels of TYR and MITF. Furthermore, CFE considerably increased the melanin content in a 3D skin model and ex vivo human hair follicles. CONCLUSIONS: These results suggest that CFE exerts hyperpigmentation activity through cAMP signalling in human melanocytes that it can improve follicular depigmentation and vitiligo by stimulating the melanin synthesis.


OBJECTIF: Dans cette étude, nous avons examiné l'effet de l'extrait de fleur de C. japonicum (EFC) sur la mélanogenèse et son mécanisme in vitro et ex vivo. MÉTHODES: L'effet du EFC sur la mélanogenèse a été étudié avec des mélanocytes humains normaux légèrement (HEMn-LP) et modérément (HEMn-MP) pigmentés, un modèle de peau reconstituée en 3 dimensions (peau 3D) et des follicules pileux ex vivo. L'effet inducteur de la mélanogénèse de la EFC a été évalué en utilisant la teneur en mélanine et le dosage de l'activité de la tyrosinase intracellulaire. La quantité et le type d'eumélanine et de phéomélanine ont été analysés en utilisant la méthode HPLC. Le mécanisme impliqué dans l'effet de la EFC sur l'hyperpigmentation a été exploré par immunoessai à l'adénosine monophosphate cyclique (AMPc) et Western blot pour l'expression de la tyrosinase, du facteur de transcription associé à la microphtalmie (MITF) et l'expression de la protéine CREB phosphorylée. Le degré de pigmentation de la peau 3D, les valeurs L ont été mesurées à l'aide d'un chromamètre CR-300. La quantité de mélanine dissoute a été mesurée à l'aide d'un spectrophotomètre. La teneur en mélanine des follicules pileux a été évaluée par coloration Fontana Masson. RÉSULTATS: EFC a augmenté de manière significative la teneur en mélanine et l'activité de la tyrosinase cellulaire dans les cellules HEMn-LP et HEMn-MP. Les marqueurs de phéomélanine et d'eumélanine dans HEMn-LP et HEMn-MP ont également été augmentés par EFC. Nous avons observé que le traitement EFC sur les mélanocytes augmentait l'AMPc intracellulaire en induisant pCREB et en régulant à la hausse les niveaux de protéines de TYR et MITF. De plus, le EFC a considérablement augmenté la teneur en mélanine dans un modèle de peau 3D et dans les follicules pileux humains ex vivo. CONCLUSIONS: Ces résultats suggèrent que la EFC exerce une activité d'hyperpigmentation via la signalisation de l'AMPc dans les mélanocytes humains qu'elle peut améliorer la dépigmentation folliculaire et le vitiligo en stimulant la synthèse de mélanine.


Hair Follicle/drug effects , Melanins/metabolism , Plant Extracts/pharmacology , Skin Lightening Preparations/pharmacology , Skin/drug effects , Vitiligo/drug therapy , Aged , Cirsium , Female , Flowers , Humans , Melanocytes/drug effects
16.
Exp Cell Res ; 409(1): 112888, 2021 12 01.
Article En | MEDLINE | ID: mdl-34715152

Hair follicle regeneration has been successful in mice but failed in human being for years. Dermal papilla cells, a specialized mesenchymal stem cell derived from dermal papilla within hair follicles, is considered the key cells for hair follicle regeneration function as both regeneration initiator and regulator. Injectable platelet rich fibrin (i-PRF), a novel biomaterial rich in a variety of growth factors and three-dimensional scaffolds, has shown promising effects on tissue regeneration. In this study, we aimed to evaluate the application of i-PRF in human hair follicle regeneration by examining the biological effects of i-PRF on human dermal papilla cells (hDPCs). Biomaterial compatibility, cell viability, proliferation, migration, alkaline phosphatase activity and trichogenic inductivity were assessed after exposing hDPCs to different concentrations of i-PRF extracts. In addition, we investigated the ultrastructure of i-PRF with all cell components filtered. The results revealed that i-PRF possessing excellent biocompatibility and could significantly promote hDPCs proliferation, migration, and trichogenic inductivity. Furthermore, the concentration of i-PRF is able to remarkably influence hDPCs behavior in a dose-dependent pattern. Different concentrations exhibited differential effects on hDPCs behavior. In general, lower concentration promotes cell proliferation better than higher concentration, while higher concentration promotes cell function better reversely. Best concentration for hDPCs in vitro expending is 1% concentration. 20% concentration is optimal for hair follicle regeneration. In summary, our findings concluded that i-PRF facilitates hair follicle regeneration by promoting human dermal papilla cell proliferation, migration, and trichogenic inductivity.


Cell Movement/drug effects , Cell Proliferation/drug effects , Dermis/drug effects , Hair Follicle/drug effects , Intercellular Signaling Peptides and Proteins/administration & dosage , Platelet-Rich Fibrin/metabolism , Adult , Aged , Aged, 80 and over , Cell Differentiation/drug effects , Cells, Cultured , Dermis/metabolism , Female , Hair Follicle/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Male , Middle Aged , Young Adult
17.
Curr Issues Mol Biol ; 43(3): 1361-1373, 2021 Sep 28.
Article En | MEDLINE | ID: mdl-34698060

Dexpanthenol (D-panthenol) is a precursor of vitamin B5 (pantothenic acid) and is widely used for dietary supplements and topical applications. D-panthenol has long been used in hair care products for the purpose of anti-hair loss, its effects and the underlying mechanisms, however, were barely reported. In this study, the effects of D-panthenol on human hair follicle cells, including dermal papilla cells (hDPCs) and outer root sheath cells (hORSCs), were investigated. D-panthenol enhanced the cell viability, increasing the cellular proliferation marker Ki67 in cultured hDPCs. The markers for apoptosis (Caspase3/9) and cell senescence (p21/p16), reported to be expressed in aged or resting phase follicles, were significantly reduced by D-panthenol. Anagen-inducing factors (ALP; ß-catenin; versican), which trigger or elongate the anagen phase, were stimulated by D-panthenol. On the other hand, D-panthenol reduced TGF-ß1 expressions in both mRNA and protein levels. The expression of VEGF, which is important for peripheral blood vessel activation; was up-regulated by D-panthenol treatment. In cultured hORSCs, cell proliferation and viability were enhanced, while the mRNA expression of cell senescence markers (p21/p16) was significantly down-regulated. The expressions of both VEGF and its receptor (VEGFR) were up-regulated by D-panthenol. In conclusion, our data suggest that the hair growth stimulating activity of D-panthenol was exerted by increasing the cell viability, suppressing the apoptotic markers, and elongating the anagen phase in hair follicles.


Apoptosis/drug effects , Cellular Senescence/drug effects , Hair Follicle/cytology , Pantothenic Acid/analogs & derivatives , Antigens, Surface/genetics , Antigens, Surface/metabolism , Apoptosis/genetics , Biomarkers , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence/genetics , Gene Expression , Gene Expression Regulation/drug effects , Hair Follicle/drug effects , Hair Follicle/metabolism , Humans , Pantothenic Acid/pharmacology , RNA, Messenger , Vitamin B Complex/pharmacology
18.
Cell Prolif ; 54(9): e13106, 2021 Sep.
Article En | MEDLINE | ID: mdl-34382262

OBJECTIVES: There are significant clinical challenges associated with alopecia treatment, including poor efficiency of related drugs and insufficient hair follicles (HFs) for transplantation. Skin-derived precursors (SKPs) exhibit great potential as stem cell-based therapies for hair regeneration; however, the proliferation and hair-inducing capacity of SKPs gradually decrease during culturing. MATERIALS AND METHODS: We describe a 3D co-culture system accompanied by kyoto encyclopaedia of genes and genomes and gene ontology enrichment analyses to determine the key factors and pathways that enhance SKP stemness and verified using alkaline phosphatase assays, Ki-67 staining, HF reconstitution, Western blot and immunofluorescence staining. The upregulated genes were confirmed utilizing corresponding recombinant protein or small-interfering RNA silencing in vitro, as well as the evaluation of telogen-to-anagen transition and HF reconstitution in vivo. RESULTS: The 3D co-culture system revealed that epidermal stem cells and adipose-derived stem cells enhanced SKP proliferation and HF regeneration capacity by amphiregulin (AREG), with the promoted stemness allowing SKPs to gain an earlier telogen-to-anagen transition and high-efficiency HF reconstitution. By contrast, inhibitors of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways downstream of AREG signalling resulted in diametrically opposite activities. CONCLUSIONS: By exploiting a 3D co-culture model, we determined that AREG promoted SKP stemness by enhancing both proliferation and hair-inducing capacity through the PI3K and MAPK pathways. These findings suggest AREG therapy as a potentially promising approach for treating alopecia.


Amphiregulin/pharmacology , Hair Follicle/drug effects , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Regeneration/drug effects , Signal Transduction/drug effects , Skin/drug effects , Alopecia/drug therapy , Alopecia/metabolism , Animals , Cells, Cultured , Coculture Techniques/methods , Epidermal Cells/drug effects , Female , Hair Follicle/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Skin/metabolism , Stem Cells/drug effects , Stem Cells/metabolism
19.
Sci Rep ; 11(1): 15453, 2021 07 29.
Article En | MEDLINE | ID: mdl-34326383

Glutamic acid is the main excitatory neurotransmitter acting both in the brain and in peripheral tissues. Abnormal distribution of glutamic acid receptors occurs in skin hyperproliferative conditions such as psoriasis and skin regeneration; however, the biological function of glutamic acid in the skin remains unclear. Using ex vivo, in vivo and in silico approaches, we showed that exogenous glutamic acid promotes hair growth and keratinocyte proliferation. Topical application of glutamic acid decreased the expression of genes related to apoptosis in the skin, whereas glutamic acid increased cell viability and proliferation in human keratinocyte cultures. In addition, we identified the keratinocyte glutamic acid excitotoxic concentration, providing evidence for the existence of a novel skin signalling pathway mediated by a neurotransmitter that controls keratinocyte and hair follicle proliferation. Thus, glutamic acid emerges as a component of the peripheral nervous system that acts to control cell growth in the skin. These results raise the perspective of the pharmacological and nutritional use of glutamic acid to treat skin diseases.


Glutamic Acid/pharmacology , Hair Follicle/drug effects , Hair/drug effects , Skin Physiological Phenomena , Skin/drug effects , Animals , Apoptosis , Cell Line , Cell Proliferation , Computer Simulation , Drug Development , Fibroblasts/metabolism , Glutamic Acid/metabolism , Humans , Keratinocytes/cytology , Male , Mice , Protein Interaction Mapping , Regeneration , Signal Transduction , Skin/metabolism
20.
Nutrients ; 13(6)2021 Jun 18.
Article En | MEDLINE | ID: mdl-34207142

Enhanced telomerase reverse transcriptase (TERT) levels in dermal keratinocytes can serve as a novel target for hair growth promotion. Previously, we identified fisetin using a system for screening food components that can activate the TERT promoter in HaCaT cells (keratinocytes). In the present study, we aimed to clarify the molecular basis of fisetin-induced hair growth promotion in mice. To this end, the dorsal skin of mice was treated with fisetin, and hair growth was evaluated 12 days after treatment. Histochemical analyses of fisetin-treated skin samples and HaCaT cells were performed to observe the effects of fisetin. The results showed that fisetin activated HaCaT cells by regulating the expression of various genes related to epidermogenesis, cell proliferation, hair follicle regulation, and hair cycle regulation. In addition, fisetin induced the secretion of exosomes from HaCaT cells, which activated ß-catenin and mitochondria in hair follicle stem cells (HFSCs) and induced their proliferation. Moreover, these results revealed the existence of exosomes as the molecular basis of keratinocyte-HFSC interaction and showed that fisetin, along with its effects on keratinocytes, caused exosome secretion, thereby activating HFSCs. This is the first study to show that keratinocyte-derived exosomes can activate HFSCs and consequently induce hair growth.


Exosomes , Flavonols/therapeutic use , Hair/drug effects , Hair/growth & development , Keratinocytes/drug effects , Keratinocytes/metabolism , Animals , Cell Proliferation/drug effects , Female , HaCaT Cells , Hair/metabolism , Hair Follicle/drug effects , Hair Follicle/metabolism , Humans , Mice , Mice, Inbred C57BL , Sirtuin 1/metabolism , Skin , Skin Physiological Phenomena/drug effects , Stem Cells , Telomerase
...